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BLAS-like Library Instantiation Subprograms (BLIS)

The Basic Linear Algebra Subprograms (BLAS) are a set of
low-level subroutines that perform common linear algebra
operations. BLIS is a software framework for instantiating
high-performance BLAS-like dense linear algebra libraries.
BLIS[1] was chosen over GoTOBLAS, ATLAS, etc. due to its
portable micro-kernel architecture and active user-base.

BLIS features

I ISO C99 code with flexible BSD license.
I Support for BLAS API calling conventions.
I Competitive performance [2].
I Multi-core friendly.
I Multi-layer API and code identifying and isolating a key set of

computational kernels.
I Modularity and extensiveness.
I Portability (x86, x64, TIC66x, PowerPC, etc.) that doesn’t

impede high performance [3].
I Foundation for mixed precision (experimental).
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Level-3 BLAS using BLIS on Myriad

BLIS Level-3 micro-kernels

BLIS defines three Level-3 micro-kernels.
Implementation of the fused GEMM-TRSM
kernel is optional.

BLIS

general
matrix-matrix
multiplication

triangular solve 
with multiple

right sides

combined/fused
 GEMM and TRSM

3
Level GEMM TRSM GEMMTRSM

Level-3 BLAS on Myriad

The BLIS ISO C99 code allowed
straightforward compilation for Myriad.
Following optimizations consisted of:

I micro-kernels implementation in SHAVE
assembler,

I and memory management/allocation
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Memory focused optimizations

I Double/triple buffering of arguments.
I Buffers shared by all SHAVEs.
I Data passing using pointer arithmetic.
I Overlapped DMA accesses.

GEMM and TRSM operations

The xGEMM and xTRSM routines are the typical benchmarks of the Level-3 BLAS performance of an
implementation. Basic information on the operations and the computational complexity of these two
routines are presented below.

Routine Operation Flops Comments
GEMM C := α · op(A) · op(B) + β · C 2mnk op(X ) =

TRSM C := α · op(A−1)C nm2 X ,XT ,XH ,C
C := α · C · op(A−1) mn2 is m × n

Mapping of matrix blocks on CMX (SGEMM)
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where,
I the numbers represent SHAVE cores,
I the boxes above them, their local CMX memory slice,
I buffering of A, B and C is not shown in order to preserve clarity.

The Myriad media-processor SoCs

Myriad architecture prioritises power-efficient operation and area efficiency. In order to guarantee sustained high performance and
minimise power the proprietary SHAVE (Streaming Hybrid Architecture Vector Engine) processor was developed. Data and
Instructions reside in a shared Connection MatriX (CMX) memory block shared by all Shave processors. Data is moved between
peripherals, processors and memory via a bank of software-controlled DMA engines.
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Myriad 1 architecture highlights [4]

I 65nm ultra-low power architecture
(≤ 0.35W@180MHz) with 11 power islands.

I Hardware support for SIMD, matrix transpose, sparse
data, sqrt@fp16, predicated execution...

I Heterogeneous SoC: 1 Leon3@fp64 + 8
Shaves@fp32.

I 32KB LRAM, 1MB CMX, 16/64MB DDR, DMAs.
I Power efficiency of 1Tops/W (max 8-bit equivalent).

128/256MB LPDDR2/3 Stacked Die

DDR Controller

256kB 2-way L2 cache (SHAVE)

2MB CMX (Connection MatriX) SRAM

256kB 4-way
L2 cache (LEON4)

32kB 2-way
I-cache (LEON4)

32kB 2-way
D-cache (LEON4)

LEON4
RISC2

32kB 4-way
L2 cache (LEON4)

4kB 2-way
I-cache (LEON4)

4kB 2-way
D-cache (LEON4)

LEON4
RISC1

  VRF 32x128

  IRF  32x32

(12 ports)

(18 ports)

DCU

IDC

1kB
D-cache

2kB
I-cache PEU BRU VAUIAULSU0 LSU1 SAU CMU

SHAVE VLIW Processor v3.0

x 12 SHAVEs
128-bit
Ports

64-bit
CMX
Port

64-bit
CMX
Port32-bit

APB

128-bit AXI 128-bit AHB 128-bit AHB

2x 64-bit DDR ports

Myriad 2 architecture highlights [4]

I 28nm ultra-low power (≤ 0.5W@600MHz) with 17 power islands.
I Extended hardware support over Myriad 1: clock-gating, hard-wired

configurable accelerators for imaging and vision, etc.
I Heterogeneous SoC: 2 Leon4@fp64 + 12 Shaves@fp32.
I 256+32KB LRAM, 2MB CMX, DDR3 support, DMAs.
I Power efficiency of 2Tops/W (max 16-bit equivalent).

SGEMM and STRSM performance

SGEMM vs #cores and matrix width:

STRSM vs #cores and matrix width:
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Results

Architecture Power Performance [GFLOPS]
[W] core system [GFLOPS/W]

SGEMM
Cell [5] 20 23.01 184.8 9.22
C6678 [3] 10 10.3 79.6 7.96
Myriad 1 [4] 0.35 0.75 4.92 14.06

STRSM
Cell [5] 20 16.47 131.8 6.59
C6678 [3] 10 8.7 59.5 5.95
Myriad 1 [4] 0.35 0.5 3.57 10.2

Conclusions

I High-performance required hand optimized micro-kernels
and memory management.

I Most effort spent on tuning memory management.
I Port to Myriad 2 (expected 10× more efficient).
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